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A B S T R A C T

In obstetric sonography, the quality of acquisition of ultrasound scan video is crucial for accurate (manual
or automated) biometric measurement and fetal health assessment. However, the nature of fetal ultrasound
involves free-hand probe manipulation and this can make it challenging to capture high-quality videos for fetal
biometry, especially for the less-experienced sonographer. Manually checking the quality of acquired videos
would be time-consuming, subjective and requires a comprehensive understanding of fetal anatomy. Thus, it
would be advantageous to develop an automatic quality assessment method to support video standardization
and improve diagnostic accuracy of video-based analysis. In this paper, we propose a general and purely data-
driven video-based quality assessment framework which directly learns a distinguishable feature representation
from high-quality ultrasound videos alone, without anatomical annotations. Our solution effectively utilizes
both spatial and temporal information of ultrasound videos. The spatio-temporal representation is learned
by a bi-directional reconstruction between the video space and the feature space, enhanced by a key-query
memory module proposed in the feature space. To further improve performance, two additional modalities are
introduced in training which are the sonographer gaze and optical flow derived from the video. Two different
clinical quality assessment tasks in fetal ultrasound are considered in our experiments, i.e., measurement of
the fetal head circumference and cerebellar diameter; in both of these, low-quality videos are detected by the
large reconstruction error in the feature space. Extensive experimental evaluation demonstrates the merits of
our approach.
1. Introduction

Ultrasound is widely used to monitor normal fetal development
and well-being since it is a radiation-free imaging modality, portable
and relatively low-cost (Reddy et al., 2008). During routine obstetric
ultrasound scans, a sonographer is tasked with finding standard ul-
trasound planes to examine anatomical structures, or to measure the
size of fetal structures (such as the fetal head circumference, femur
length, etc.). Fetal biometry is used to estimate fetal gestational age
and to monitor fetal growth (Papageorghiou et al., 2014; Self et al.,
2022). Deep learning based methods are widely used in ultrasound
image analysis (Fiorentino et al., 2022). However, the acquisition of
good planes is highly dependent on the experience of a sonographer,
fetal movement and acoustic shadowing, leading to a high intra- and
inter-observer variability (Sarris et al., 2012). The importance of qual-
ity assessment for obstetric scanning has been emphasized in several
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studies (Dudley and Chapman, 2002; Salomon et al., 2006; Cavallaro
et al., 2018). In practice, the suitability of a still image or video for
biometry is ensured by an experienced sonographer manually checking
whether all required anatomical structures are visible and whether
the view is appropriately magnified. This is time-consuming in real
time, and labor-intensive. Thus, automatic clinical quality assessment
of fetal ultrasound scanning is desirable. In the literature, previous
automated quality assessment algorithms (Wu et al., 2017; Lin et al.,
2018, 2019; Dong et al., 2019; Yaqub et al., 2021) are typically image-
based methods based on supervised learning, which require extensive
annotation of fetal anatomical structures and assume pre-defined im-
age quality criteria, normally based on anatomical appearance. Such
methods aim to mimic clinical practice such as those outlined in
international guidelines for ultrasound acquisition (Salomon et al.,
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2019); and lead to an explainable representation (i.e., a human user can
understand algorithm performance). However, such an approach de-
mands a lot of human effort due to the heavy annotation requirement,
which also limits the generalizability of this type of approach. That is,
new labels are required for every clinical quality assurance task. It is
noteworthy that hardly any method (Wu et al., 2017; Lin et al., 2018)
takes into consideration the temporal information, performing quality
assessment only on a single frame or a series of single frames treated
independently.

In this paper, we consider video-based clinical quality assessment
for fetal biometry. The goal of this work is to check acquired video
quality and provide recommendations for retaking scans if necessary.
Compared with image-based method, our approach involves temporal
information which allows the model to learn a better understanding of
the fetal anatomy. It evaluates high-quality ultrasound videos, focusing
on the appropriateness of a captured video clip for further clinical anal-
ysis, rather than identifying a predefined standard plane. The proposed
approach follows a reconstruction-based anomaly detection pipeline
with bi-directional reconstruction between the video space and the fea-
ture space. Similar to classical anomaly detection task, the intuition is
that low-quality samples can be recognized by the large reconstruction
error as the low-quality samples are not part of the training dataset.
A 3D encoder–decoder pair is designed with decomposition to capture
the spatio-temporal information in the video sequence. A key-query
memory module is proposed, which stores the intrinsic information
of the high-quality data and makes the model more sensitive to low-
quality samples. Different from the existing methods in the literature,
our approach achieves effective usage of both spatial and temporal
information and requires no anatomy-specific annotations.

The contributions of our paper can be summarized as: (1) to the best
of our knowledge, our approach is the first attempt to implement ultra-
sound clinical quality assessment by an unsupervised pipeline without
the prerequisite of anatomical annotations; (2) a memory-based bi-
directional reconstruction between the video and feature spaces is
proposed to learn the discriminative representation for identifying
high-quality data; finally, (3) multi-modality data, i.e., optical flow and
a gaze map, are engaged with the help of an input generator and an
auxiliary prediction branch, respectively, which further improve video
quality assessment performance.

This article substantially extends a conference paper (Zhao et al.,
2022). Specifically, the current article, includes a new key-query mem-
ory module that is shown to enhance the spatio-temporal feature rep-
resentation. This novel method is evaluated by assessing the quality of
video acquisition in two exemplar tasks, i.e., fetal head circumference
measurement and fetal cerebellar diameter measurement, which are
two essential tasks for gestational age estimation. Extensive ablation
studies are well discussed to verify the significance of each component.
The remainder of the paper is organized as follows. In Section 2, related
work on ultrasound quality assessment and video anomaly detection is
reviewed. In Section 3, we detail our approach. Experiments and results
are presented and discussed in Section 4. Conclusions are presented in
Section 5.

2. Related work

This section covers related technical background literature on visual
quality assessment for natural images, clinical ultrasound image quality
assessment, and video anomaly detection.

2.1. Visual quality assessment

Natural Image Quality Assessment (IQA) has been well studied in
image processing. IQA aims to simulate human perception, which is
influenced by image content sharpness, contrast, and illumination (Kra-
sula et al., 2017). Most IQA methods have been developed for natural
images, and focus on natural image clarity and noise removal (Wang
2

et al., 2004; Heusel et al., 2017). Visual quality is normally assessed in
terms of fidelity and clarity. Several prior works (Hemmsen et al., 2010;
Loizou et al., 2006; Sassaroli et al., 2019) concentrate on evaluating this
kind of quality for ultrasound images by using similar metrics to those
proposed for natural images. In Loizou et al. (2006), statistical and
texture analysis are applied to the images, and together with the quality
metrics and visual perception are used to evaluate image quality.

2.2. Clinical image quality assessment for ultrasound

Clinical image quality is highly related to the specific application
and context. Ultrasound images with low contrast, acoustic shadow,
and speckle are categorized as low quality with respect to visual
quality. However, such images may still be deemed acceptable to a
clinician if sufficient diagnostic information is contained within them.
Abdi et al. (2017a) propose a framework for automatic quality assess-
ment of echo data in ultrasound by a regression convolutional neural
network. A quality assessment method for cardiac ultrasound image is
proposed in Liao et al. (2019) through modeling the label uncertainty
in CNNs. The authors in Baum et al. (2021) propose a weighted quality
score to accept or reject diagnostic-quality lung ultrasound images,
which combines the classification-based quality score and the novelty
detection-based quality score by Bayesian model averaging.

In obstetric examination and diagnosis, incorrect fetal biometric
measurement may lead to inaccurate fetal gestational age estimation
and increase the misdiagnosis risk. Therefore, ensuring high-quality
fetal ultrasound acquisition is crucial and important. Several studies
have been carried out following this definition of clinical quality in
fetal ultrasound (Yaqub et al., 2019; Zhang et al., 2021; Yaqub et al.,
2021). Standard plane detection (Chen et al., 2015; Baumgartner et al.,
2017; Cai et al., 2018) can also be considered to implicitly assess
image quality, typically defined in terms of the detectability of specific
structures in an image. Early work that considers this type of approach
is Rahmatullah et al. (2011). This uses an AdaBoost classifier with Haar-
like features to score fetal ultrasound clinical quality by detecting two
landmarks of the fetal abdomen. Zhang et al. (2017) propose a random
forest approach to determine the quality of fetal head images with the
shape and anatomical features calculated from the head region. An
automatic quality assessment method for 2nd trimester fetal ultrasound
is proposed in Wu et al. (2017) named FUIQA, which is realized by
two deep convolutional neural network models for region extraction
and anatomy detection, respectively. Finally, image quality is evaluated
by assessing the goodness of depiction of the stomach bubble and
the umbilical vein. Lin et al. (2018) proposes a Faster RCNN-based
model to evaluate fetal head ultrasound image quality, which is further
extended in Lin et al. (2019) by a more specific protocol. A detection
branch aims to detect six key anatomical structures, and a classification
branch is included to identify the fan-shape area. A quality score is
given by a pre-defined protocol based on the key anatomies and area
shape. In Abdi et al. (2017a,b), Abdi et al. propose a deep regression
model and a recurrent neural network, respectively, for quality assess-
ment of echocardiography. Dong et al. (2019) propose a multi-branch
framework for fetal echocardiography quality assessment, where three
anatomical structures are localized by a cascading classification and
detection network. Additionally, view zoom and gain are assessed by
a classification model. A semi-supervised approach is proposed in Gao
et al. (2020) to select head planes in low-cost ultrasound probe video
with prototype features and metric learning. Saeed et al. (2021) treat
the quality assessment task as a measure of image amenability with
respect to a specific task by a reinforcement learning model. Although
clinical criteria are not necessary for their method, it should be noted
that detailed anatomical annotations are required in the training phase.
A specified pre-defined protocol and annotated locations of anatomical
structures are required in most of the aforementioned methods, which
limits generalization to new applications.
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2.3. Video anomaly detection

Most of the reported video anomaly detection studies for natural
scenes have considered the task of detecting abnormal frames in a
surveillance video. Early anomaly detection methods were based on
hand-crafted features (Basharat et al., 2008; Cong et al., 2011; Cheng
et al., 2015). The most common deep learning-base approaches are
based on image reconstruction and attempt to reconstruct normal
frames and identify events with large reconstruction errors as anoma-
lies. Autoencoders (Hasan et al., 2016; Zhao et al., 2017; Gong et al.,
2019; Park et al., 2020) are widely adopted in this kind of method for
image reconstruction. In Zhao et al. (2017), a spatio-temporal autoen-
coder is utilized to learn a video representation and extract features by
frame reconstruction and prediction branches. A temporally-coherent
sparse coding-based anomaly detection method is proposed in Luo et al.
(2017). The sparse coefficients are iteratively updated via a stacked
RNN to detect anomalies in videos. Wang et al. (2021) propose a multi-
path convGRU-based frame prediction network to capture temporal
relationships and handle informative parts of the frame. Liu et al.
(2018) detect anomalies with large reconstruction error between a
predicted frame and the corresponding ground truth. However, the
aforementioned video anomaly detection methods treat a single frame
as a target instead of a video clip. In addition, the image background
of these applications is typically static which is totally different from
ultrasound videos.

3. Method

Our approach is distinctive from existing ultrasound clinical quality
assessment methods in two ways. Firstly, both spatial and temporal
information is considered by a spatio-temporal encoder and decoder
pair. Secondly, our approach is a generalizable method that does not
need anatomy-specific annotation and pre-defined protocol.

We formulate the task as an anomaly detection problem, where low-
quality video is regarded as the anomalous data. Denote the training
dataset as  = {𝑥1,… , 𝑥𝑁} with 𝑁 high-quality training samples only
and a test dataset 𝑡 = {(𝑥𝑡1 , 𝑦1),… , (𝑥𝑡𝑀 , 𝑦𝑀 )} where 𝑦𝑖 = 0 indicates
low quality video clips and 𝑦𝑖 = 1 indicates high quality ones. Our
goal is to learn the distribution of high-quality video in the training
set . This will allow to identify the low-quality video in a given test
set 𝑡 as anomalous. To achieve this, we propose a spatio-temporal
encoder and decoder pair with a memory module to fully exploit the
value of high-quality videos via a bi-directional reconstruction between
the video space and the feature space.

As illustrated in Fig. 1, the video is first processed by an input
processing module (IPM) which outputs a region of interest (ROI) for
each frame in the video 𝑥𝑧 ∈ R𝑊 ×𝐻×1×𝑄 and an optical flow map
𝑥𝑜 ∈ R𝑊 ×𝐻×1×𝑄, where 𝑊 and 𝐻 denote the input video spatial size
nd 𝑄 refers to the number of frames in the video. The ROI-extracted
ideo 𝑥𝑧 and corresponding optical flow map 𝑥𝑜 are input to model
raining. A spatio-temporal encoder 𝐺𝑒 and decoder 𝐺𝑑 pair is adopted

to learn the spatio-temporal features from bi-directional reconstruction
between the video and feature spaces with adversarial learning. The bi-
directional information flow between the two spaces provides feedback
for model training and allows the high-quality data representation to
be discriminated from low-quality data. A more discriminative repre-
sentation is learned due to the proposed key-query memory module
that stores the intrinsic information about the high quality data. An
auxiliary branch for gaze prediction is included in the video space to
mimic where a sonographer looks. Our model is trained in an end-
to-end manner, following a similar scheme as described in Zhu et al.
(2017), where translations between two domains are performed. In the
training stage, one forward process includes video reconstruction and
feature reconstruction, where the raw video and the sampled features
are inputs to our model and the corresponding generated videos and
reconstructed features the outputs. In the inference stage shown in
3
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Fig. 1(d), the feature reconstruction error is used as an indicator to
identify the low-quality data with a large reconstruction error. In the
following sections, we introduce the key components of our model in
more detail.

3.1. Input processing module

The proposed input processing module (IPM) is shown in Fig. 1(b)
and consists of two parts for ROI extraction and anatomical structure
displacement estimation.

ROI extraction. In obstetric ultrasound scans, curvilinear ultrasound
transducer is commonly used, meaning the field of view is a fan-shaped
area. Maternal tissues may occupy large regions of this area, which
does not contribute to the clinical quality of the video focusing on
the fetus. Maternal tissues can mislead the model as the background
contributes to the overall reconstruction error. Inspired by Jaderberg
et al. (2015), we propose a ROI extraction unit that uses a spatial
transformer network to localize the region of interest. The unit shown
in Fig. 1(b) contains two parts: a backbone network for affine parame-
ters learning and a grid generator (𝜃) for sampling grid generation.

he inception-V1 (Szegedy et al., 2015) is utilized as the backbone
etwork to learn parameters of the affine transformation. A sampling
rid used for producing transformed outputs is generated by the grid
enerator 𝑆(𝜃) based on the learned parameters. Finally, the sampling
rid is applied to each input video frame to create a spatial region of
nterest with high field-of-view occupancy. Different from Jaderberg
t al. (2015), our ROI extraction unit is pre-trained independently as
detection task by minimizing the difference between the ROI and the

pproximate region surrounding a fetal structure at the pixel level. The
OI extraction unit parameters are fixed in model training and testing.
sing a pretrained and fixed unit enables the model to prioritize the

econstruction and learn the representation of high-quality data rather
han optimizing fetal structure localization.

ptical flow generator. We use the Farneback algorithm1 (Farnebäck,
2003) to generate optical flow. The optical flow is derived from the
video but it is considered as a additional modality as it describes
movement rather than spatial patterns. This optical flow captures the
displacement patterns of anatomical structures in the ultrasound video.
However, the background structures in ultrasound videos can have
a large diversity and the speckle can change with the movement of
tissues (Prabhu et al., 2014), which can make it difficult to accurately
capture these displacement patterns. To address this issue, we introduce
pre-processing with a 2D median filter, which is a simple but effective
technique for reducing unrelated movement. This helps improve the
accuracy of the displacement patterns captured by the optical flow.
This pre-processing step helps the Farneback algorithm to focus on
capturing the useful displacement of anatomical structures rather than
being influenced by speckle and background changes. Fig. 2 shows that
obvious fetal head structures can be captured when including the pre-
processing step, while the optical flow-based displacement map without
pre-processing generates spurious displacements.

3.2. Adversarial bi-directional reconstruction with spatio-temporal encoder–
decoder

As shown in Fig. 1, our model takes the video and optical flow as
inputs and outputs reconstructed video as well as the gaze prediction.
There are two directional reconstruction processes between the video
space () and the feature space () assisted by adversarial learning,
which are the video space circle  →  →  and the feature space
circle  →  →  , respectively. The encoder 𝐺𝑒 ∶  →  and

1 This algorithm is chosen for its low computational cost, while recent deep
earning based method might be suitable but without finding superior results.
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Fig. 1. Flowchart of our approach. (a) Training stage with a bi-directional reconstruction loop in video and feature spaces, where c⃝ refers to a concatenation operation. Note, the
encoder 𝐺𝑒 takes two modalities of video and optical flow as input, and two decoders 𝐺𝑑 , 𝐺′

𝑑 output reconstructed video and predicted gaze, respectively. (b) The input processing
module which includes ROI extraction and optical flow map generation. In the ROI extraction module, the sampling grid of affine transformation is generated by grid generator
(𝜃) with the learned parameter 𝜃. (c) The proposed memory module captures intrinsic feature representation of high-quality data by the key-query scheme. 𝑉 𝑎𝑙𝑢𝑒 matrix stores
prototypical features and 𝐾𝑒𝑦 matrix is the index for retrieval. (d) Test stage for ultrasound quality assessment, where the feature reconstruction error is used as a criterion to
identify low-quality videos.
Fig. 2. Two examples of optical flow (OF) generated by the Farneback algorithm. From
left to right of each panel are raw images, OF generated without pre-processing, OF
generated with pre-processing.

decoder 𝐺𝑑 ∶  →  build the bridge between two spaces. To help the
model generate realistic high-quality data, two discriminators 𝐷 and
𝐷 are proposed. Specifically, 𝐷 is employed to distinguish videos
generated by 𝐺𝑑 from the real high-quality data. 𝐷 is utilized to
identify features generated by 𝐺𝑒 from the real features sampled from
a multivariate Gaussian distribution. The bi-directional reconstruction
makes our model gain a better understanding of the high-quality data
by exploring the information from both spaces.

Encoder and decoder. The encoder 𝐺𝑒 and decoder 𝐺𝑑 are 3D CNN
models, which fully exploit the spatial and temporal information. We
prefer to decompose the temporal and spatial information, as this
means the model is easier to optimize compared with a pure spatio-
temporal CNN solution (i.e., R3D (Tran et al., 2015)). With the spatial
convolution in advance, redundant spatial information can be elimi-
nated, leaving only the crucial spatial information to be combined with
temporal information to compose the representation of high-quality
4

data. The bottleneck feature output by 𝐺𝑒 is concatenated with the
feature retrieved from the memory module  and serves as input to the
decoder 𝐺𝑑 . Our encoder 𝐺𝑒 consists of eight 3D convolutional layers.
The first five layers are each only for spatial convolution, for which
the kernel size is 1 × 4 × 4 and the stride is 1 × 2 × 2. The other
three convolutional layers merge the spatial and temporal information
together leading to a bottleneck feature of size 𝐶. The spatio-temporal
convolutional layers have a kernel size 4 × 4 × 4 and stride 2 × 2 × 2.
The decoder 𝐺𝑑 has a symmetrical structure to the encoder but uses
deconvolutional layers where the first three deconvolutional layers
perform spatio-temporal deconvolution and the following five layers
reconstruct spatial information.

Discriminators. The video space discriminator 𝐷 is similar to Patch-
GAN (Li and Wand, 2016) but with a spatio-temporal convolutional
structure. There are five layers, where the first layer is a spatial
convolution with kernel size 1 × 3 × 3 and stride 1 × 2 × 2 and the
following three layers are spatio-temporal convolutions with kernel size
3 × 3 × 3 and stride 2 × 2 × 2 followed by a spatial convolutional layer
with kernel size 1 × 3 × 3 and stride 1. The feature space discriminator
𝐷 is a multi-layer perceptron network (MLP) with six fully-connected
layers which have a neuron size from 512 to 1.

Gaze prediction branch. Eye-tracking data synchronized with the video
was available in our study. This shows the sonographer gaze locations
during scanning. We can use this for gaze prediction. Trying to predict
gaze forces the model to learn salient regions of interest in high-quality
video. We propose a multi-task branch for gaze prediction, where an
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auxiliary decoder 𝐺𝑑′ , sharing the same structure with 𝐺𝑑 , is employed
o learn the gaze map from the videos supervised by gaze ground truth.
ompared with serving as an additional input, the gaze utilized as a
rediction output has two advantages. It eliminates the requirement
f gaze in the test phase and enables the model to provide a valuable
ignal to sonographers on where to look.

.3. Key-query memory module

In principle, the reconstruction-based method models the high-
uality data by obtaining an encoding feature representation which
reserves the most important information of high-quality data. It forces
he model to learn typical patterns of high-quality data in training. In
rder to enhance this idea, we propose to use a key-query memory mod-
le  to store the typical high-quality information, e.g., the anatomical
ey structure referring to high-quality data. The intuition of using the
emory is to mimic the process of quality assessment by sonographers.

ike how sonographers identify high-quality samples by the critical
natomical structures in the video, the memory module remembers and
ocuses on the relevant features of high-quality samples during training.
y integrating the proposed memory module, the retrieved features in
urn help the model differentiate between high-quality and low-quality
amples in the test phase. The proposed module not only improves the
ccuracy of our approach but also provides an interpretable analysis of
igh-quality data.

The proposed memory module  consists of two components: a
emory to store typical high-quality information and an index to

etrieve the most relevant prototype from this stored information. As
hown in Fig. 1(c), the Value matrix is the memory that stores all the
rototypical vectors and the Key matrix is the index used to retrieve

prototypes from Value matrix. The high-quality related features ex-
racted from  are concatenated with encoding feature representation

of input sample and fed to the decoder 𝐺𝑑 to reconstruct the video.
The memory (Value) is defined as a matrix 𝑽 ∈ R𝑀×𝐶 that contains

𝑀 prototypical feature vectors with dimension 𝐶. The index (Key) is
defined as 𝑲 ∈ R𝑀×𝐶 , which control the information retrieval process.
n our approach, the dimension 𝐶 is the same as the encoding feature
epresentation from 𝐺𝑒. Each element of 𝑽 denotes a memory item as
row vector 𝒗𝑖,𝑖∈{1,..,𝑀}. Given a query encoding vector from the input

ample 𝒒 ∈ R1×𝐶 , the retrieved representation from memory module is
alculated based on a weighted summation:

=
𝑀
∑

𝑖=1
𝜔𝑖𝒗𝒊, (1)

here 𝜔𝑖 is the weight coefficient and ∑𝑀
1 𝜔𝑖 = 1. The weight is

sed for accessing the memory by calculating the similarity between
he query vector 𝒒 and the key vector 𝒌𝑖 ∈ R1×𝐶 that is a row
ector representing each element of 𝐾. Similar to the attention score
n Vaswani et al. (2017), we compute the weight coefficient 𝜔𝑖 with a
caled softmax operation:

𝑖 =
exp( 1

√

𝐶
𝑠𝑖𝑚(𝒒,𝒌𝑖))

∑𝑀
𝑗=1 exp(

1
√

𝐶
𝑠𝑖𝑚(𝒒,𝒌𝑗 ))

, (2)

here 𝑠𝑖𝑚(⋅) indicates similarity function, which is defined as:

𝑖𝑚(𝑞, 𝑘𝑖) =
𝒒 ⋅ 𝒌𝑖

‖𝒒‖ ‖
‖

𝒌𝑖‖‖
(3)

he scaling factor 1
√

𝐶
is adopted to reduce the large magnitude by dot

product due to the larger encoding representation size 𝐶, which may
lead to a hard training process with an extremely small gradient.

In the training phase, the memory module is optimized by back-
propagation of the video space reconstruction, which supervises the
module to record the most representative features in the high-quality
video. In the test phase, the most relevant features representing high-
quality video are retrieved for image reconstruction. The reconstruction
5

c

is carried out by using both the retrieved features from memory module
 and the encoding feature representation from encoder 𝐺𝑒. Therefore,
the reconstruction tends to be close to the high-quality data, leading to
small reconstruction errors for high-quality samples and large errors
for low-quality samples which appear similar to high-quality samples.
By using the memory module, the model generates high-quality related
feature representations that increase its sensitivity to detect low-quality
data.

3.4. Objective functions

Training is supervised by the adversarial bi-directional reconstruc-
tion and multi-task gaze prediction. The encoder 𝐺𝑒 and decoder 𝐺𝑑 are
lternatively optimized with discriminators 𝐷 and 𝐷 . Specifically,
he model is trained to solve the following optimization function:

min
𝐺

max
𝐷

 = 𝜔𝑎𝑑𝑣𝑎𝑑𝑣 + 𝜔𝑟𝑒𝑐𝑟𝑒𝑐 + 𝜔𝑔𝑎𝑧𝑒𝑔𝑎𝑧𝑒, (4)

where 𝑎𝑑𝑣, 𝑟𝑒𝑐 , 𝑔𝑎𝑧𝑒 indicate adversarial loss, bi-directional re-
construction loss, and gaze loss, respectively, and 𝜔∗ refers to the
corresponding loss weights.

3.4.1. Adversarial loss
Two discriminators are proposed to distinguish the generated videos

or features from the real ones. These discriminators aid the model
to obtain a better reconstruction of high-quality data. A least-squares
adversarial loss is used to optimize the discriminators:

min
𝐷

𝐷
= 1

2
|𝐷 (𝐺𝑑 ([𝒇 ,(𝑓 )]))|2 + 1

2
|𝐷 (𝑥𝑧) − 1|2, (5)

and

min
𝐷

𝐷
= 1

2
|𝐷 (𝐺𝑒(𝑥𝑧, 𝑥𝑜))|

2 + 1
2
|𝐷 (𝒇 ) − 1|2, (6)

where 𝑥𝑧, 𝑥𝑜 are the ROI-extracted videos and corresponding optical
flow map, respectively; 𝒇 is the feature vector sampled from a multi-
variate Gaussian distribution as in Kingma and Welling (2014); and [⋅, ⋅]
refers to the concatenation operation. The encoder 𝐺𝑒 and decoder 𝐺𝑑
can benefit from the adversarial learning by optimizing the following
formulation:

𝑎𝑑𝑣 = 1
2
|𝐷 (𝐺𝑒(𝑥𝑧, 𝑥𝑜)) − 1|2 + |𝐷 (𝐺𝑑 ([𝒇 ,(𝑓 )])) − 1|2. (7)

.4.2. Bi-directional reconstruction loss
The bi-directional reconstruction loss allows the encoder and de-

oder to fully exploit the spatio-temporal representations of high-
uality videos for a realistic reconstruction result by learning the
nformation flows between the video space and feature space. For video
econstruction, we utilize the structure similarity (SSIM) (Wang et al.,
004) whereby the average SSIM score over all video frames defines
he video SSIM score. Namely,

𝑆𝐼𝑀(𝒙, 𝒚) = 1
𝑄

𝑄
∑

𝑖=1

(2𝜇𝑥𝑖𝜇𝑦𝑖 + 𝑐1)(2𝜎𝑥𝑖𝑦𝑖 + 𝑐2)

(𝜇2
𝑥𝑖
+ 𝜇2

𝑦𝑖
+ 𝑐1)(𝜎2𝑥𝑖 + 𝜎2𝑦𝑖 + 𝑐2)

, (8)

here 𝑥𝑖 and 𝑦𝑖 are the input and reconstruction, respectively; 𝜇∗ and
∗ refer to the mean intensity and the standard deviation of image,
espectively and 𝜎𝑥𝑦 denotes the covariance of images. The constants 𝑐1
nd 𝑐2 are set to 0.01 and 0.03, respectively. The video reconstruction
oss 𝑟𝑒𝑐𝑉 is defined as:

𝑟𝑒𝑐𝑉 = 1 − 𝑆𝑆𝐼𝑀(𝑥𝑧, 𝐺𝑑 ([𝑓𝑧,(𝑓𝑧)])), (9)

here 𝑓𝑧 = 𝐺𝑒(𝑥𝑧, 𝑥𝑜) is the feature representation generated by
ncoder 𝐺𝑒. Compared with the pixel-wise L1 loss used for image
econstruction, the SSIM loss focusing on the image content is less
ensitive to pixel shifts. This attribute enables the model to learn
linical quality information related to anatomy rather than just pixel in-
ensity during reconstruction. It also makes our approach for ultrasound
linical quality assessment less sensitive to speckle.
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Fig. 3. Illustration of the data acquisition process and examples of high- and low-quality frames for two different tasks. (a) The process of data acquisition. Video and gaze are
captured simultaneously, where two-second video clips are used as training or test samples based on frozen frames of different types. The video with aTVP/aTCP type is obtained
five seconds before the frozen frame, which stands for approaching the TVP/TCP plane. (b) Exemplar frames for the fetal HC measurement task (High-quality video: TVP); (c)
Exemplar frames for the fetal cerebellar measurement task (High-quality video: TCP).
For feature reconstruction, we consider the encoding feature 𝒇 as
well as the feature 𝒛 generated from memory module together. In this
case 𝑟𝑒𝑐𝐹 is defined as:

𝑟𝑒𝑐𝐹 = ‖𝐺𝑒(𝐺𝑑 ([𝒇 ,(𝒇 )]), 𝑥𝑜) − 𝒇‖1
+ ‖(𝐺𝑒(𝐺𝑑 ([𝒇 ,(𝒇 )]), 𝑥𝑜)) −(𝒇 )‖1,

(10)

where [⋅, ⋅] indicated the concatenation operation. Finally, the bi-
directional reconstruction loss 𝑟𝑒𝑐 is defined as:

𝑟𝑒𝑐 = 𝑟𝑒𝑐𝑉 + 𝑟𝑒𝑐𝐹 . (11)

3.4.3. Gaze loss
An auxiliary loss is introduced by the gaze prediction task. The gaze

loss function is utilized for the model to learn the gaze saliency map.
This minimizes the difference between the gaze prediction map and the
ground-truth by a simple L1 loss. The gaze loss 𝑔𝑎𝑧𝑒 is defined as:

𝑔𝑎𝑧𝑒 = ‖𝐺𝑑′ (𝐺𝑒(𝑥𝑧, 𝑥𝑜)) − 𝑥𝑔‖1, (12)

where 𝑥𝑔 is the eye gaze ground truth.

4. Experiments

In this section, we evaluate our approach on two fetal anatomy
biometry tasks: head circumference measurement, and cerebellar mea-
surement. For each task, the high-quality video is defined as the video
clip containing frames which are suitable for biometry. Next we de-
scribe the dataset used in our study and the experimental configuration.

4.1. Datasets

The data used in our experiments are from an existing study
PULSE (Drukker et al., 2021), which is approved by the UK Research
Ethics Committee (Reference 18/WS/0051). Full-length ultrasound
videos were recorded by a free-hand acquisition protocol on a GE
Voluson E8 scanner at 30 Hz. Simultaneously, gaze data was acquired
using a Tobii Eye Tracker 4C. In total, our dataset consisted of scans
from 430 subjects. Videos had a frame resolution of 1008 × 784. The
data acquisition process is shown in Fig. 3(a), where an experienced
sonographer moves the probe to find and freeze a biometry plane.
Video clips containing the frozen frame and 2 s before are labeled with
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the frozen frame type, e.g., transventricular plane (TVP), transcerebellar
plane (TCP), abdominal circumference plane (ACP). Using a two-second
video clip as our data sample achieves a balance between performance
and computational cost. This clip length provides sufficient information
for quality assessment and corresponds to the fine search stage of
sonographer scanning that takes place shortly before the frozen frame.
Clinically, TVP is used for measuring the fetal head circumference;
TCP is obtained for cerebellar measurement; ACP is captured for fetal
abdominal circumference measurement. An approaching transventric-
ular/transcerebellar plane (aTVP/aTCP) is defined as the video clip
collected 5–7 s before the frozen TVP/TCP frame. Based on the def-
initions above, we considered modeling the two tasks of fetal head
circumference (HC) measurement and fetal cerebellar measurement as
follows. For fetal HC measurement (i.e., Fig. 3(b)), the high-quality
data is TVP, while low-quality videos are TCP, aTVP, and ACP. For
fetal cerebellar measurement (i.e., Fig. 3(c)), the high-quality data is
TCP, while low-quality data is TVP, aTCP, and ACP. Each subject scan
provided one video clip for each type of input sample. For each of the
two biometry tasks, 300 high-quality samples were randomly selected
as the training set. The test set consists of 311 samples which are the
remaining 130 high-quality clips and 181 low-quality clips randomly
selected from 430 subjects. Considering the computational complexity
and the content changes of ultrasound frames, we re-sampled the raw
video with a sampling rate at 8 Hz and selected 8 frames to form the
input samples.

4.2. Experimental settings

The spatial resolution of videos is resized by bi-cubic interpolation
to 256 × 256 pixels. The pixel values are standardized to [−1, 1] in each
video frame. We employ data augmentation on the spatial dimension
including image flipping and contrast adjustment. The parameters of
the Farneback algorithm are set to the defaults except the filter size is
determined as 3 according to the image size. The median filter used for
pre-processing has a large kernel size of 21 to reduce the unrelated pixel
displacement. Our approach is implemented in PyTorch v1.10.0. Our
model is trained with an Adam optimizer and a decayed learning rate.
Following the CycleGAN training scheme (Zhu et al., 2017), the model
is trained for 200 epochs with a starting learning rate set to 0.0002,
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Table 1
Performance of different methods based on the ROI-extracted videos with the evaluation metric of AUC, F1 (%), ACC (%), SEN (%) and SPE (%) on fetal HC measurement task
and fetal cerebellar measurement task, respectively.

Fetal HC measurement Fetal Cereb. measurement

AUC F1 ACC SEN SPE AUC F1 ACC SEN SPE

Single modality

Image-based 0.8196 83.61 77.09 93.69 49.57 0.7568 82.83 72.67 99.03 20.19
MNAD (Park et al., 2020) 0.3702 73.40 58.52 98.34 3.08 0.3459 73.36 58.20 98.90 1.54
STAE (Zhao et al., 2017) 0.8612 83.13 77.81 87.63 64.57 0.8311 83.32 75.56 91.43 43.91

Our approach

Video w/o  (Zhao et al., 2022) 0.8896 84.88 80.06 89.69 64.10 0.8401 83.87 75.88 94.20 44.74
Video only 0.9164 88.27 85.21 89.18 78.63 0.8766 85.65 79.10 93.72 50.00

Multiple modalities
with Optical flow 0.9246 89.69 87.14 89.69 82.91 0.8813 86.61 80.71 93.72 54.81
with Gaze 0.9300 89.64 87.14 89.18 83.76 0.8825 86.20 79.10 98.07 41.37
All modality (ours) 0.9424 90.34 88.10 89.18 86.32 0.8924 88.38 83.60 93.72 63.46
Fig. 4. Receiver operating characteristic (ROC) curves of the comparison methods on two different fetal measurement tasks.
which linearly decays to 0 in the last 100 epochs. The loss weights 𝜔𝑎𝑑𝑣,
𝜔𝑟𝑒𝑐 and 𝜔𝑔𝑎𝑧𝑒 are empirically set to 1, 10 and 10, respectively.

We choose the area under the receiver operating characteristic curve
(AUC), F1-score, accuracy, sensitivity and specificity as the evaluation
metrics. For reference, the low-quality video is defined as positive
sample and the high-quality video is defined as negative sample. The
overall performance of quality assessment is judged by AUC and F1-
score, while sensitivity and specificity reflect the ability to correctly
detect positive and negative samples. The threshold to calculate the
scores is determined based on the best value of F1-score.

4.3. Experimental results

We benchmark our approach with other methods in the literature
for the two biometry tasks. As there is no existing clinical quality
assessment method can be trained without anatomical annotations, we
compare our approach with the most related video anomaly detection
methods. Specially, we compare with two technically similar approach,
(1) a Spatio-Temporal Auto-Encoder (STAE) (Zhao et al., 2017) and
(2) MNAD (Park et al., 2020); (3) an image-based version of our
approach which only takes the last frozen frame of video as input; and
(4) our variant without memory module (Zhao et al., 2022) (Video
w/o ). STAE (Zhao et al., 2017) is a video space-only method to
detect anomalous cases by learning the reconstruction of videos alone.
MNAD (Park et al., 2020) is a video anomaly detection method which
detects anomalous frames in a video. In contrast to our work, it does
not consider the video as a whole sample. Given the different setting
of the current work, we suppose that their model would not achieve
satisfactory results with respect to other compared methods.

Fetal HC measurement task. We first evaluate our approach on the fetal
HC measurement task where the TVP video is regarded as high-quality
data. The results shown in Table 1 indicate that the proposed approach
with multi-modality data has the best performance in terms of AUC
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and F1-score. Note that here is a significant performance gap between
the image-based and video-based methods. These results suggest that
temporal information is useful to identify the clinical quality of a
specific task. Intuitively this makes sense, as the last frozen frame is
not always the best diagnostic frame for biometry. Sometimes, the
sonographer will ‘‘roll back’’ the video in the buffer to manually find
the best measurement plane.

Among the video-based methods, our approach achieves the best
performance with an AUC of 0.9164, which is about 5% higher than
STAE. Compared with our earlier paper (Zhao et al., 2022), the pro-
posed memory-based model achieves improvements of 3% and 4.3%
in terms of AUC score for the HC and Cereb. measurement tasks,
respectively. In addition, the increasing specificity demonstrates that
the memory module based model avoids misclassifying high-quality
data as low quality. This is because the memory module learns pro-
totypical representations of high-quality samples during training and
generates features close to high-quality data regardless of the input.
This characteristic results in a model with lower reconstruction error
for high-quality data and higher error for low-quality data. The im-
provement observed for the single modality case clearly indicates the
benefits of our bi-directional reconstruction scheme and the proposed
memory module. With the aid of the optical flow map and gaze,
the AUC further increases from 0.9164 to 0.9424. Our approach also
achieves the best specificity of 86.32% and the third highest sensitivity
of 89.18%. This demonstrates our approach is able to detect most of
the low-quality data while keeping a high true negative detection rate.
The ROC curves for the models are shown in Fig. 4. Our approach out-
performs the other models. Among all of the variants of our approach,
the model with all modalities is the best, especially in the true positive
rate axis range of [0.8, 0.9]. This corresponds to the most useful range
for quality assessment as it achieves a high detection rate of low-quality
data.

Fetal cerebellar measurement task. We next test our approach for model-
ing the fetal cerebellar measurement task and treat TCP as high-quality

data. The results are shown in the right panel of Table 1, and the
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Table 2
Model performance with and without the ROI extraction module for the fetal HC
measurement task.

ROI module AUC F1 ACC SEN SPE

No 0.7048 77.60 68.81 82.82 35.38
Yes 0.9246 89.69 87.14 89.69 82.91

Table 3
Performance of our model with different gaze loss weightings (𝜔𝑔𝑎𝑧𝑒) in Eq. (4).

𝜔𝑔𝑎𝑧𝑒 AUC F1 ACC SEN SPE

0 0.9246 89.69 87.14 89.69 82.91
1 0.9316 89.98 87.46 90.21 82.91
10 0.9424 90.34 88.10 89.18 86.32
15 0.9330 89.49 87.46 85.57 90.60

Fig. 5. Three examples of gaze prediction between two consecutive frames for the two
fetal measurement tasks. Exemplar anatomical key structures for each tasks are shown
with red box, such as CSP and CP for HC measurement task, and Cereb. for cerebellar
measurement task.

corresponding ROC curve is displayed in Fig. 4(b). A similar trend
to HC measurement is observed with our memory-based bi-directional
reconstruction approach achieving the best performance. Compared to
HC measurement task, this task’s overall performance has decreased,
especially the image-based methods with a relatively low specificity
indicating that spatial information alone is inadequate for fetal ultra-
sound quality assessment. The reason for performance degradation is
that it is difficult for the model to reconstruct the fetal cerebellar as
the structure in the TCP is more complicated than the TVP. This can be
observed from Fig. 3. However, our approach still obtains the highest
performance with AUC of 0.8924 and F1-score of 88.38%.

4.4. Ablation study

We conducted an ablation study to understand the effect of each
component in our model, the parameter settings, and the reconstruction
schemes. All the ablation experiments are conducted on the fetal HC
measurement task.

4.4.1. ROI extraction
Table 2 reports the performance metrics for our model with and

without the ROI extraction module. Observe that there is a significant
model performance improvement when the ROI-extraction module is
used. With the ROI-extraction module, the AUC increases from 0.7048
to 0.9246 which is a statistically significant improvement (p-value =
0.0003 < 0.05). The explanation for this is that the affine transformation
network enables the model to ignore background tissue and to focus
on fetal structures as being critical for image reconstruction. This
operation simulates the sonographer assessing the quality, where the
crucial part will be zoomed in to make a large field of view followed
by diagnosis.
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Fig. 6. Reconstructed images from different memory feature vectors stored in the
memory bank 𝑽 .

Table 4
Effect of memory module size (Msize) on model performance for the fetal HC
measurement task.

Msize AUC F1 ACC SEN SPE

5 0.9231 88.61 85.53 90.21 77.78
15 0.9246 89.69 87.14 89.69 82.91
30 0.9239 89.17 86.17 81.24 77.78
60 0.9236 88.32 85.21 89.69 77.78

4.4.2. Gaze prediction
To investigate the influence of the gaze loss we conducted the

following experiments with the full model (model with the IPM and
memory module) where we varied 𝜔𝑔𝑎𝑧𝑒 in Eq. (4) to be 0, 1, 10, 15.
Results are summarized in Table 3. When 𝜔𝑔𝑎𝑧𝑒 = 0, it means no gaze
data is used in model training. It is observed that as the gaze loss weight
increases, model performance metrics increase until 𝜔𝑔𝑎𝑧𝑒 = 10. At this
value the AUC is 0.9424, which is approximately 2% higher than the
model without gaze. Based on the these results, we select 𝜔𝑔𝑎𝑧𝑒 = 10 as
our gaze weight for our experiments.

Gaze predictions with 𝜔𝑔𝑎𝑧𝑒 = 10 on consecutive frames are shown
in Fig. 5. The top row displays results for the fetal HC measurement
task, while the bottom shows gaze prediction for the fetal cerebellar
measurement task. For the HC measurement task, the sonographer aims
to find several anatomical key structures, such as the cavum septi
pellucidi (CSP) and choroid plexus (CP). In our predictions, the gaze
saliency maps show a high intensity (red spot) on those structures. For
the cerebellar measurement task, gaze predictions mainly focus on the
edges of cerebellar as well as the CSP.

4.4.3. Memory module
The memory module is based on a key-query mechanism and stores

the prototypical representations in a value matrix. To validate this mod-
ule, we first quantitatively analyze the influence of memory size and
qualitatively investigate images generated by different memory feature
vectors. Model performance using a memory module with different
memory sizes is summarized in Table 4, where the model is trained
with optical flow and video modalities. The results show that memory
size has little impact on model performance. Indeed, a small memory
size can achieve a good result. We attribute that the variance within
the high-quality data is not large, allowing a small memory bank to
effectively handle the prototypical representations. As for using a large
memory bank, such as 30 and 60, we find that it does not improve
the model performance, but rather slightly decreases it. we hypothe-
size that a large bank size (e.g., 30 or 60) with limited prototypical
representations may not provide any additional information, thereby
failing to improve the performance. Instead, it increases the number
of parameters that need to be optimized, leading to a slightly worse
result. Based on the experiment results, we choose the memory size
as 15 for our memory module. Reconstructed images based on random
selected memory feature vectors are shown in Fig. 6. Compared with
the real high-quality data (e.g., Fig. 2), the reconstructed images only
from the memory feature vectors are smooth with less tissue structures.
This means the representations only keep the essential information
of the high-quality data and discard the variant information of each
input sample, such as the unrelated anatomical structures for high-
quality decision. Among images generated by different prototypical
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Fig. 7. Image-space reconstruction results of our model for the fetal HC measurement task with respect to the existence of our memory module. Different panels display different
types of videos, namely (a) TVP, (b) TCP, (c) aTVP, and (d) ACP, respectively. Two different exemplar frames and their corresponding reconstructions regarding memory modules
are shown for each type.
Fig. 8. Image-space reconstruction results of our model for the fetal Cereb. measurement task with respect to the existence of our memory module. Different panels display
different types of videos, namely (a) TCP, (b) TVP, (c) aTCP, and (d) ACP, respectively. Two different exemplar frames and their corresponding reconstructions regarding memory
modules are shown for each type.
representations, all the reconstructions contain the essential structures
that allow for TVP identification. These features include the boundary
of head skull, the middle line, and the choroid plexus (CP).

We also compare video reconstruction generated by the model with
and without the memory module for the fetal HC measurement task
and fetal cerebellar measurement task. Fig. 7 shows the exemplar
original frames of high-quality (TVP) and low-quality (TCP, aTVP,
ACP) video as well as their reconstructions. Two different examples
are shown in each column of each case, while from top to bottom
rows are the original frame, the frame reconstructed using the model
without the memory module, and the reconstructed frame generated by
the model with the memory module. We analyze the superior perfor-
mance of the proposed memory module in two scenarios: high-quality
data reconstruction and low-quality data reconstruction. For the high-
quality data (i.e., (a) TVP in our case), the real video frames exhibit
clear structures of cavum septi pellucidi (CSP) and a well-defined
shape of CP, which are two essential anatomical features for quality
assessment by clinicians. The model without memory can generate a
blurry head skull similar to the original frame, but the anatomies inside
the head are ambiguous, resulting in a large difference not only for
human perception but also for feature reconstruction. On the contrary,
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our memory-based model produces reconstructed images with well-
defined anatomies that visually resemble the real high-quality data
more closely. As to the low-quality data (i.e., (b) TCP, (c) aTVP, and
(d) ACP), our model is able to generate realistic anatomical structures
and content information based on the original input frames. Despite
the significant difference between the ACP and TVP, our model is able
to generate outputs that closely match the key anatomies of a TVP,
which indicates the ability of memory module to remember the high-
quality related structures. However, the non-memory model produces
outputs with poorly defined anatomical structures which can hardly be
recognized as high-quality frames.

In Fig. 8, we present the visual reconstruction results of the fetal
cerebellar measurement task. Similar to the results shown in Fig. 7,
the reconstruction achieved with our memory module exhibits the
best performance. For the high-quality data, the reconstruction by
our approach successfully maintains clearer and more well-defined
cerebellar structures resembling the original frames than the results by
non-memory model. It is obvious that the reconstructed results without
the memory exhibit less distinguishable structures compared to Fig. 7.
This is because the anatomies within TCP are more complex and chal-
lenging to be learned using a simple encoder–decoder reconstruction
approach. This issue is effectively alleviated by our proposed memory
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Fig. 9. Reconstruction error in feature space with different settings of reconstruction method, modality and model structure (i.e., memory module). (a), (b), and (c) are with video
modality only; (b), (c), and (d) are based on bi-directional reconstruction; (c) and (d) are with memory module.
module, which preserves the clarity of cerebellar structures even in
low-quality data. The visual reconstruction results shown in Figs. 7
and 8 demonstrates the effectiveness of our memory module to capture
features of different anatomies.

4.4.4. Reconstruction in the feature space
In the test phase, we utilize the reconstruction error in the feature

space as the metric to discriminate low-quality videos from high-quality
ones. We quantitatively analyze the reconstruction error for the high-
quality and low-quality data under different conditions, including the
use of memory module, as well as different modalities and reconstruc-
tion strategies. Fig. 9 reports the mean and standard deviation of the
reconstruction error in the feature space.

Referring to Fig. 9(a) and (b), the high-quality videos (i.e., TVP)
report a higher average reconstruction error when the model is trained
with only one-directional reconstruction flow. Besides, the reconstruc-
tion error difference between TVP (high Q) and Average low Q in (a) is
smaller than that in (b), which makes it easier for the two-way recon-
struction model to discriminate low-quality samples from high-quality
ones. It demonstrates that more information is able to be learned from
both video and feature spaces, which leads to superior performance.
Furthermore, the memory-based model reports a smaller reconstruction
error on high-quality data but a larger error on low-quality data (shown
in (b) and (c)). This shows the benefits of the memory module, which
enlarges the distance between high and low quality leading to increase
the discriminative power of the model. The margin between high-
and low-quality data is larger for the multi-modality case comparing
Fig. 9(c) and (d), especially for aTVP that is the closest low-quality
class to the high-quality class. Besides, the standard deviation is smaller
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for the multi-modality based model compared with the single modality
based model. This suggests that multi-modality data is able to help
the model learn a better representation and provide a more stable
performance to identify low-quality videos.

5. Conclusion

In this paper, we propose a framework to assess video clinical
quality in fetal ultrasound with an anomaly detection pipeline based
on bi-directional reconstruction. The new approach avoids the draw-
backs of traditional quality assessment that is dependent on anatomical
annotations and a pre-defined protocol. Instead of an image-based
assessment, we utilize a spatio-temporal encoder and decoder pair
to exploit both the spatial and temporal information in the video. A
memory module with key-query information retrieval mechanism is
proposed to learn the typical information of high-quality data in the
training phase. The additional modalities of optical flow and gaze are
found to improve model performance by providing additional informa-
tion on clinically relevant regions. Our approach provides a new idea
about how to evaluate clinical ultrasound video quality in a data-driven
fashion without relying on manual data annotations. Experiments on
two obstetric examination applications demonstrate the effectiveness
of our approach. Our approach may be readily generalized to differ-
ent task-specific clinical ultrasound and non-ultrasound video quality
assessment tasks.
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